.

Molecular Oncology and Ovarian Pathologies

Reiner A. VEITIA

Our team focuses on the study of ovarian development and function through molecular genetics. Our research is carried out through the molecular analysis of different pathologies such as the blepharophimosis syndrome, premature ovarian insufficiency (POI) or granulosa cell tumors, affecting one of the somatic cell types of the ovary. One of the historical topics of the group is the analysis of the blepharophimosis syndrome, involving craniofacial anomalies and POI, due to alterations in the transcription factor (TF) FOXL2. Over the years, we have contributed to a better understanding of its molecular function, pathogenic mechanisms, targets and partners. We use FOXL2 as a model to explore the basis of the specific recognition of a target by a TF and the influence of partners and post-translational modifications in this process. We are also investigating the involvement of FOXL2 in adult granulosa cell tumors (AGCT). Indeed, a recurrent somatic mutation in FOXL2, leading to the p.C134W substitution has been detected in more than 97% of AGCTs, suggesting that this mutation is a key element (driver) in their formation. We are actively studying the pathogenic mechanisms of this mutation using CRISPR-Cas9 modified cell lines, an animal model and genomic tools. For the juvenile form of GCTs, we have recently reported the presence of insertions in the AKT1 oncogene that are likely responsible for the tumors, paving the way for further research. Finally, we are taking advantage of the power of current genomic technology to perform exome sequencing in familial and isolated cases of POI to uncover genes whose mutations are responsible for this condition. We have thus shown the involvement in POI of genes such as STAG3 or more recently MEIOB.

Keywords: Ovary, transcription factor, gene regulation, omics analysis, IOP, cancer

+33 (0)157278116     reiner.veitia(at)ijm.fr

The main objective of the research carried out by our team is the study of ovarian function through molecular genetics. A historical subject of the group has been the analysis of the Blepharophimosis syndrome (craniofacial anomalies and premature ovarian insufficiency or POI), due to alterations in the transcription factor FOXL2. Over the years, we have contributed to a better understanding of the molecular function of FOXL2, its mechanisms of pathogenicity and the discovery of numerous targets and partners. FOXL2 provides an excellent model to study the combinatorial regulation of transcription, as it modulates a series of apparently unrelated processes (e.g. cholesterol and steroid metabolism, apoptosis, cell cycle, free radical detoxification, etc.). Thus, we use FOXL2 as a model to explore the basis of specific target recognition by a transcription factor and the influence of its partners and post-translational modifications on this process. To do so, we use state-of-the-art genomics and proteomics tools.

 

Caption: FOXL2 interactome: protein-protein interaction network for 255 FOXL2 partners identified by co-immunoprecipitation and mass spectrometry.

 

FOXL2 has also opened an avenue of research into ovarian granulosa cell tumors (GCTs), which account for up to 8% of all ovarian cancers. Two distinct subtypes of GCTs have been described: juvenile and adult forms. The adult type occurs most often during perimenopause and is characterized by late recurrence (up to 40 years after treatment of the primary tumor). The juvenile form (JGCT) tends to occur in the prepubertal period. A recurrent somatic mutation in FOXL2, leading to the p.C134W substitution has been detected in more than 97% of AGCTs, suggesting that this mutation is a driver of their formation. We are actively investigating the pathogenic mechanisms of this mutation using CRISPR-Cas9 modified cell lines, an animal model and genomic tools.

The molecular basis of JGCT is less well understood. We recently found tandem duplications in the reading frame of the AKT1 oncogene that affect the pleckstrin-homology domain (PHD) of the protein in over 60% of JGCTs. The effects of these mutations are currently being studied in cell and Drosophila models.

 

        

Caption: HeLa cells expressing the normal version of AKT1 (right) and one of the mutated versions found in ovarian tumors (left) (core: blue, AKT1: red).

 

Finally, we are taking advantage of the power of current genomic technology to discover new genes involved in female infertility due to POI, by performing exome sequencing in familial and isolated cases of this disorder. The functions of candidate genes discovered in these analyses are or will be studied using molecular approaches and animal models.

Group leader:

Reiner VEITIA
Téléphone : +33 (0)157278116
Email : reiner.veitia (at) ijm.fr

 

Members:

 

Sandrine CABURET Researcher
Bérangère LEGOIS Biological technician
Anne-Laure TODESCHINI Researcher
Alain ZIDER Researcher
Despina Maria CHOUSIANITI Erasmus
Joël SILBER Emeritus Teacher-Researcher
Ludovic MOUSSERON Doctorant

Reply to “An alternative miRISC targets a cancer-associated coding sequence mutation in FOXL2”. Veitia RA, Pilsworth J, Todeschini AL, Huntsman D.EMBO J. 2021 Aug 16;40(16):e107517. doi: 10.15252/embj.2020107517.PMID: 34396573

FOXL2 in adult-type granulosa cell tumour of the ovary: oncogene or tumour suppressor gene? Pilsworth JA, Todeschini AL, Neilson SJ, Cochrane DR, Lai D, Anttonen M, Heikinheimo M, Huntsman DG, Veitia RA.J Pathol. 2021 Nov;255(3):225-231. doi: 10.1002/path.5771. Epub 2021 Sep 1.PMID: 34338304

Insights into the pathogenicity of missense variants in the forkhead domain of FOX proteins underlying Mendelian disorders. Bermúdez-Guzmán L, Veitia RA. Hum Genet. 2021 Jul;140(7):999-1010.


Forkhead Transcription Factors in Health and Disease.
 Herman L, Todeschini AL, Veitia RA.Trends Genet. 2021 May;37(5):460-475 (Review).

Genomic exploration of the targets of FOXL2 and ESR2 unveils their implication in cell migration, invasion, and adhesion. Herman L, Legois B, Todeschini ALVeitia RA.FASEB J. 2021 Apr;35(4):e21355. doi: 10.1096/fj.202002444R.PMID: 33749886

A missense in HSF2BP causing primary ovarian insufficiency affects meiotic recombination by its novel interactor C19ORF57/BRME1. Felipe-Medina N, Caburet S, Sánchez-Sáez F, Condezo YB, de Rooij DG, Gómez-H L, Garcia-Valiente R, Todeschini AL, Duque P, Sánchez-Martin MA, Shalev SA, Llano E, Veitia RA, Pendás AM.Elife. 2020 Aug 26;9:e56996. doi: 10.7554/eLife.56996.PMID: 32845237 Free

An exome-wide exploration of cases of primary ovarian insufficiency uncovers novel sequence variants and candidate genes. Alvarez-Mora MI, Todeschini ALCaburet S, Perets LP, Mila M, Younis JS, Shalev S, Veitia RA.Clin Genet. 2020 Sep;98(3):293-298. doi: 10.1111/cge.13803. Epub 2020 Jul 28.PMID: 32613604

DHH pathogenic variants involved in 46,XY disorders of sex development differentially impact protein self-cleavage and structural conformation. Elzaiat M, Flatters D, Sierra-Díaz DC, Legois B, Laissue P, Veitia RA.Hum Genet. 2020 Nov;139(11):1455-1470.

Conventional and unconventional interactions of the transcription factor FOXL2 uncovered by a proteome-wide analysis. Penrad-Mobayed M, Perrin C, Herman L, Todeschini AL, Nigon F, Cosson B, Caburet SVeitia RA.FASEB J. 2020 Jan;34(1):571-587. doi: 10.1096/fj.201901573R. Epub 2019 Nov 25.PMID: 31914586


A truncating MEIOB mutation responsible for familial primary ovarian insufficiency abolishes its interaction with its partner SPATA22 and their recruitment to DNA double-strand breaks.
Caburet STodeschini AL, Petrillo C, Martini E, Farran ND, Legois B, Livera G, Younis JS, Shalev S, Veitia RA.EBioMedicine. 2019 Apr;42:524-531. doi: 10.1016/j.ebiom.2019.03.075. Epub 2019 Apr 15.PMID: 31000419

Publications

Herman, L., Amo, A., Legois, B., Di Carlo, C., Veitia, R. A., & Todeschini, A.-L. (2024). A cellular model provides insights into the pathogenicity of the oncogenic FOXL2 somatic variant p.Cys134Trp. British Journal of Cancer, 1–10. https://doi.org/10.1038/s41416-024-02613-x
Zutterling, C., Todeschini, A.-L., Fourmy, D., Busso, D., Veaute, X., Ducongé, F., & Veitia, R. A. (2023). The forkhead DNA-binding domain binds specific G2-rich RNA sequences. Nucleic Acids Research, gkad994. https://doi.org/10.1093/nar/gkad994
Pozzi, C., Vanet, A., Francesconi, V., Tagliazucchi, L., Tassone, G., Venturelli, A., Spyrakis, F., Mazzorana, M., Costi, M. P., & Tonelli, M. (2023). Antitarget, Anti-SARS-CoV-2 Leads, Drugs, and the Drug Discovery-Genetics Alliance Perspective. Journal of Medicinal Chemistry, 66(6), 3664–3702. https://doi.org/10.1021/acs.jmedchem.2c01229
Ariste, O., de la Grange, P., & Veitia, R. A. (2023). Recurrent missense variants in clonal hematopoiesis-related genes present in the general population. Clinical Genetics, 103(2), 247–251. https://doi.org/10.1111/cge.14259
Llano, E., Todeschini, A. L., Felipe-Medina, N., Corte-Torres, M. D., Condezo, Y. B., Sanchez-Martin, M., López-Tamargo, S., Astudillo, A., Puente, X. S., Pendas, A. M., & Veitia, R. A. (2023). The Oncogenic FOXL2 C134W Mutation Is a Key Driver of Granulosa Cell Tumors. Cancer Research, 83(2), 239–250. https://doi.org/10.1158/0008-5472.CAN-22-1880
Franca, M. M., Condezo, Y. B., Elzaiat, M., Felipe-Medina, N., Sánchez-Sáez, F., Muñoz, S., Sainz-Urruela, R., Martín-Hervás, M. R., García-Valiente, R., Sánchez-Martín, M. A., Astudillo, A., Mendez, J., Llano, E., Veitia, R. A., Mendonca, B. B., & Pendás, A. M. (2022). A truncating variant of RAD51B associated with primary ovarian insufficiency provides insights into its meiotic and somatic functions. Cell Death and Differentiation. https://doi.org/10.1038/s41418-022-01021-z
Barakizou, H., Souha, G., Kamoun, T., Mehdi, M., Amary, F., Huma, Z., Todeschini, A., Veitia, R., & Donaldson, M. (2022). Precocious Pseudo-puberty in a Two-year-old Girl, Presenting with Bilateral Ovarian Enlargement and Progressing to Unilateral Juvenile Granulosa Cell Tumour. Journal of Clinical Research in Pediatric Endocrinology, 14(1), 107–113. https://doi.org/10.4274/jcrpe.galenos.2021.2021.0039
Veitia, R. A., & Innan, H. (2022). Pathogenic “germline” variants associated with myeloproliferative disorders in apparently normal individuals: Inherited or acquired genetic alterations? Clinical Genetics, 101(3), 371–374. https://doi.org/10.1111/cge.14104
Veitia, R. A., & Birchler, J. A. (2022). Gene-dosage issues: a recurrent theme in whole genome duplication events. Trends in Genetics: TIG, 38(1), 1–3. https://doi.org/10.1016/j.tig.2021.06.006
Pilsworth, J. A., Todeschini, A.-L., Neilson, S. J., Cochrane, D. R., Lai, D., Anttonen, M., Heikinheimo, M., Huntsman, D. G., & Veitia, R. A. (2021). FOXL2 in adult-type granulosa cell tumour of the ovary: oncogene or tumour suppressor gene? The Journal of Pathology, 255(3), 225–231. https://doi.org/10.1002/path.5771
Veitia, R. A. (2021). A reply to: Longitudinal changes in the frequency of mosaic chromosome Y loss in peripheral blood cells of aging men varies profoundly between individuals. European Journal of Human Genetics: EJHG, 29(9), 1321–1322. https://doi.org/10.1038/s41431-020-00801-w
Veitia, R. A., Pilsworth, J., Todeschini, A.-L., & Huntsman, D. (2021). Reply to “An alternative miRISC targets a cancer-associated coding sequence mutation in FOXL2.” The EMBO Journal, 40(16), e107517. https://doi.org/10.15252/embj.2020107517
Bermúdez-Guzmán, L., & Veitia, R. A. (2021). Insights into the pathogenicity of missense variants in the forkhead domain of FOX proteins underlying Mendelian disorders. Human Genetics, 140(7), 999–1010. https://doi.org/10.1007/s00439-021-02267-2
Innan, H., Vaiman, D., & Veitia, R. A. (2021). Predictable increase in female reproductive window: A simple model connecting age of reproduction, menopause, and longevity. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 43(5), e2000233. https://doi.org/10.1002/bies.202000233
Herman, L., Legois, B., Todeschini, A.-L., & Veitia, R. A. (2021). Genomic exploration of the targets of FOXL2 and ESR2 unveils their implication in cell migration, invasion, and adhesion. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 35(4), e21355. https://doi.org/10.1096/fj.202002444R
Caburet, S., Heddar, A., Dardillac, E., Creux, H., Lambert, M., Messiaen, S., Tourpin, S., Livera, G., Lopez, B. S., & Misrahi, M. (2021). Homozygous hypomorphic BRCA2 variant in primary ovarian insufficiency without cancer or Fanconi anaemia trait. Journal of Medical Genetics, 58(2), 125–134. https://doi.org/10.1136/jmedgenet-2019-106672
Veitia, R. A. (2021). Clinical Genetics paving the way to the future. Clinical Genetics, 99(2), 217–218. https://doi.org/10.1111/cge.13899
Picolo, F., Grandchamp, A., Piégu, B., Rolland, A. D., Veitia, R. A., & Monget, P. (2021). Genes Encoding Teleost Orthologs of Human Haploinsufficient and Monoallelically Expressed Genes Remain in Duplicate More Frequently Than the Whole Genome. International Journal of Genomics, 2021, 9028667. https://doi.org/10.1155/2021/9028667
Elzaiat, M., Flatters, D., Sierra-Díaz, D. C., Legois, B., Laissue, P., & Veitia, R. A. (2020). DHH pathogenic variants involved in 46,XY disorders of sex development differentially impact protein self-cleavage and structural conformation. Human Genetics, 139(11), 1455–1470. https://doi.org/10.1007/s00439-020-02189-5
Alvarez-Mora, M. I., Todeschini, A.-L., Caburet, S., Perets, L. P., Mila, M., Younis, J. S., Shalev, S., & Veitia, R. A. (2020). An exome-wide exploration of cases of primary ovarian insufficiency uncovers novel sequence variants and candidate genes. Clinical Genetics, 98(3), 293–298. https://doi.org/10.1111/cge.13803
Felipe-Medina, N., Caburet, S., Sánchez-Sáez, F., Condezo, Y. B., de Rooij, D. G., Gómez-H, L., Garcia-Valiente, R., Todeschini, A. L., Duque, P., Sánchez-Martin, M. A., Shalev, S. A., Llano, E., Veitia, R. A., & Pendás, A. M. (2020). A missense in HSF2BP causing primary ovarian insufficiency affects meiotic recombination by its novel interactor C19ORF57/BRME1. ELife, 9, e56996. https://doi.org/10.7554/eLife.56996
Innan, H., Veitia, R., & Govindaraju, D. R. (2020). Genetic and epigenetic Muller’s ratchet as a mechanism of frailty and morbidity during aging: a demographic genetic model. Human Genetics, 139(3), 409–420. https://doi.org/10.1007/s00439-019-02067-9
Benayoun, B. A., & Veitia, R. A. (2020). Special issue on “Molecular genetics of aging and longevity”: a critical time in the field of geroscience. Human Genetics, 139(3), 275–276. https://doi.org/10.1007/s00439-020-02125-7
Grassmann, F., International AMD Genomics Consortium (IAMDGC), Weber, B. H. F., & Veitia, R. A. (2020). Insights into the loss of the Y chromosome with age in control individuals and in patients with age-related macular degeneration using genotyping microarray data. Human Genetics, 139(3), 401–407. https://doi.org/10.1007/s00439-019-02029-1
Penrad-Mobayed, M., Perrin, C., Herman, L., Todeschini, A.-L., Nigon, F., Cosson, B., Caburet, S., & Veitia, R. A. (2020). Conventional and unconventional interactions of the transcription factor FOXL2 uncovered by a proteome-wide analysis. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 34(1), 571–587. https://doi.org/10.1096/fj.201901573R
Veitia, R. A. (2019). MIRAGE Syndrome: Phenotypic Rescue by Somatic Mutation and Selection. Trends in Molecular Medicine, 25(11), 937–940. https://doi.org/10.1016/j.molmed.2019.08.008
Veitia, R. A. (2019). AFF3: a new player in maintaining XIST monoallelic expression. Journal of Molecular Cell Biology, 11(9), 723–724. https://doi.org/10.1093/jmcb/mjy082
Veitia, R. A. (2019). Darwinian selection within an individual or somatic selection: facts and models. Journal of Molecular Cell Biology, 11(8), 719–722. https://doi.org/10.1093/jmcb/mjz014
Veitia, R. A. (2019). DNA Content, Cell Size, and Cell Senescence. Trends in Biochemical Sciences, 44(8), 645–647. https://doi.org/10.1016/j.tibs.2019.04.013
Elzaiat, M., Herman, L., Legois, B., Léger, T., Todeschini, A.-L., & Veitia, R. A. (2019). High-throughput Exploration of the Network Dependent on AKT1 in Mouse Ovarian Granulosa Cells. Molecular & Cellular Proteomics: MCP, 18(7), 1307–1319. https://doi.org/10.1074/mcp.RA119.0014613
Veitia, R. A. (2019). Further quantitative insights into the decrease of heteroplasmy of m.3243A>G with age in leukocytes. Clinical Genetics, 95(4), 542–543. https://doi.org/10.1111/cge.13496
Caburet, S., Todeschini, A.-L., Petrillo, C., Martini, E., Farran, N. D., Legois, B., Livera, G., Younis, J. S., Shalev, S., & Veitia, R. A. (2019). A truncating MEIOB mutation responsible for familial primary ovarian insufficiency abolishes its interaction with its partner SPATA22 and their recruitment to DNA double-strand breaks. EBioMedicine, 42, 524–531. https://doi.org/10.1016/j.ebiom.2019.03.075
Birchler, J. A., & Veitia, R. A. (2019). Genomic Balance and Speciation. Epigenetics Insights, 12, 2516865719840291. https://doi.org/10.1177/2516865719840291
Veitia, R. A. (2018). On the loss of human sex chromosomes in lymphocytes with age: a quantitative treatment. European Journal of Human Genetics: EJHG, 26(12), 1875–1878. https://doi.org/10.1038/s41431-018-0225-0
Veitia, R. A. (2018). Dosage effects in morphogenetic gradients of transcription factors: insights from a simple mathematical model. Journal of Genetics, 97(2), 365–370.
Huhtaniemi, I., Hovatta, O., La Marca, A., Livera, G., Monniaux, D., Persani, L., Heddar, A., Jarzabek, K., Laisk-Podar, T., Salumets, A., Tapanainen, J. S., Veitia, R. A., Visser, J. A., Wieacker, P., Wolczynski, S., & Misrahi, M. (2018). Advances in the Molecular Pathophysiology, Genetics, and Treatment of Primary Ovarian Insufficiency. Trends in Endocrinology and Metabolism: TEM, 29(6), 400–419. https://doi.org/10.1016/j.tem.2018.03.010
Penrad-Mobayed, M., Perrin, C., L’Hôte, D., Contremoulins, V., Lepesant, J.-A., Boizet-Bonhoure, B., Poulat, F., Baudin, X., & Veitia, R. A. (2018). A role for SOX9 in post-transcriptional processes: insights from the amphibian oocyte. Scientific Reports, 8(1), 7191. https://doi.org/10.1038/s41598-018-25356-1
Veitia, R. A. (2018). How the most common mitochondrial DNA mutation (m.3243A>G) vanishes from leukocytes: a mathematical model. Human Molecular Genetics, 27(9), 1565–1571. https://doi.org/10.1093/hmg/ddy063
Bernard, V., Villa, C., Auguste, A., Lamothe, S., Guillou, A., Martin, A., Caburet, S., Young, J., Veitia, R. A., & Binart, N. (2018). Natural and molecular history of prolactinoma: insights from a Prlr-/- mouse model. Oncotarget, 9(5), 6144–6155. https://doi.org/10.18632/oncotarget.23713
Elewa, A., Wang, H., Talavera-López, C., Joven, A., Brito, G., Kumar, A., Hameed, L. S., Penrad-Mobayed, M., Yao, Z., Zamani, N., Abbas, Y., Abdullayev, I., Sandberg, R., Grabherr, M., Andersson, B., & Simon, A. (2017). Reading and editing the Pleurodeles waltl genome reveals novel features of tetrapod regeneration. Nature Communications, 8(1), 2286. https://doi.org/10.1038/s41467-017-01964-9
Fouquet, B., Pawlikowska, P., Caburet, S., Guigon, C., Mäkinen, M., Tanner, L., Hietala, M., Urbanska, K., Bellutti, L., Legois, B., Bessieres, B., Gougeon, A., Benachi, A., Livera, G., Rosselli, F., Veitia, R. A., & Misrahi, M. (2017). A homozygous FANCM mutation underlies a familial case of non-syndromic primary ovarian insufficiency. ELife, 6, e30490. https://doi.org/10.7554/eLife.30490
Sellés, J., Penrad-Mobayed, M., Guillaume, C., Fuger, A., Auvray, L., Faklaris, O., & Montel, F. (2017). Nuclear pore complex plasticity during developmental process as revealed by super-resolution microscopy. Scientific Reports, 7(1), 14732. https://doi.org/10.1038/s41598-017-15433-2
Paris, F., Flatters, D., Caburet, S., Legois, B., Servant, N., Lefebvre, H., Sultan, C., & Veitia, R. A. (2017). A novel variant of DHH in a familial case of 46,XY disorder of sex development: Insights from molecular dynamics simulations. Clinical Endocrinology, 87(5), 539–544. https://doi.org/10.1111/cen.13420
Veitia, R. A. (2017). Gene Duplicates: Agents of Fragility? - A Reply to Landry and Diss. Trends in Genetics: TIG, 33(10), 658–660. https://doi.org/10.1016/j.tig.2017.07.013
Carlosama, C., Elzaiat, M., Patiño, L. C., Mateus, H. E., Veitia, R. A., & Laissue, P. (2017). A homozygous donor splice-site mutation in the meiotic gene MSH4 causes primary ovarian insufficiency. Human Molecular Genetics, 26(16), 3161–3166. https://doi.org/10.1093/hmg/ddx199
Baetens, D., Stoop, H., Peelman, F., Todeschini, A.-L., Rosseel, T., Coppieters, F., Veitia, R. A., Looijenga, L. H. J., De Baere, E., & Cools, M. (2017). NR5A1 is a novel disease gene for 46,XX testicular and ovotesticular disorders of sex development. Genetics in Medicine, 19(4), 367–376. https://doi.org/10.1038/gim.2016.118
Veitia, R. A. (2017). A Fresh Look at ‘Aging’ Proteins. Trends in Biochemical Sciences, 42(2), 86–89. https://doi.org/10.1016/j.tibs.2016.11.001
Bottani, S., & Veitia, R. A. (2017). Hill function-based models of transcriptional switches: impact of specific, nonspecific, functional and nonfunctional binding. Biological Reviews, 92(2), 953–963. https://doi.org/10.1111/brv.12262
Veitia, R. A. (n.d.). Dominant negative variants and cotranslational assembly of macromolecular complexes. BioEssays, n/a(n/a), 2300105. https://doi.org/10.1002/bies.202300105
Xie, J., Aiello, U., Clement, Y., Haidara, N., Girbig, M., Schmitzova, J., Pena, V., Müller, C. W., Libri, D., & Porrua, O. (n.d.). An integrated model for termination of RNA polymerase III transcription. Science Advances, 8(28), eabm9875. https://doi.org/10.1126/sciadv.abm9875

 

Reviews

Veitia, R. A. (2022). Who ever thought genetic mutations were random? Trends in Plant Science, 27(8), 733–735. https://doi.org/10.1016/j.tplants.2022.03.003
Herman, L., Todeschini, A.-L., & Veitia, R. A. (2021). Forkhead Transcription Factors in Health and Disease. Trends in Genetics: TIG, 37(5), 460–475. https://doi.org/10.1016/j.tig.2020.11.003
Birchler, J. A., & Veitia, R. A. (2021). One Hundred Years of Gene Balance: How Stoichiometric Issues Affect Gene Expression, Genome Evolution, and Quantitative Traits. Cytogenetic and Genome Research, 161(10–11), 529–550. https://doi.org/10.1159/000519592
Govindaraju, D. R., Innan, H., & Veitia, R. A. (2020). The Muller’s Ratchet and Aging. Trends in Genetics: TIG, 36(6), 395–402. https://doi.org/10.1016/j.tig.2020.02.004
Veitia, R. A. (2020). Primary ovarian insufficiency, meiosis and DNA repair. Biomedical Journal, 43(2), 115–123. https://doi.org/10.1016/j.bj.2020.03.005
Johnson, A. F., Nguyen, H. T., & Veitia, R. A. (2019). Causes and effects of haploinsufficiency. Biological Reviews of the Cambridge Philosophical Society, 94(5), 1774–1785. https://doi.org/10.1111/brv.12527
Ouimette, J.-F., Rougeulle, C., & Veitia, R. A. (2019). Three-dimensional genome architecture in health and disease. Clinical Genetics, 95(2), 189–198. https://doi.org/10.1111/cge.13219
Bottani, S., Zabet, N. R., Wendel, J. F., & Veitia, R. A. (2018). Gene Expression Dominance in Allopolyploids: Hypotheses and Models. Trends in Plant Science, 23(5), 393–402. https://doi.org/10.1016/j.tplants.2018.01.002
Veitia, R. A., Caburet, S., & Birchler, J. A. (2018). Mechanisms of Mendelian dominance. Clinical Genetics, 93(3), 419–428. https://doi.org/10.1111/cge.13107
Veitia, R. A., Govindaraju, D. R., Bottani, S., & Birchler, J. A. (2017). Aging: Somatic Mutations, Epigenetic Drift and Gene Dosage Imbalance. Trends in Cell Biology, 27(4), 299–310. https://doi.org/10.1016/j.tcb.2016.11.006
Elzaiat, M., Todeschini, A.-L., Caburet, S., & Veitia, R. a. (2017). The genetic make-up of ovarian development and function: the focus on the transcription factor FOXL2. Clinical Genetics, 91(2), 173–182. https://doi.org/10.1111/cge.12862

 

Book chapter

Shi, X., Chen, C., Yang, H., Hou, J., Ji, T., Cheng, J., Veitia, R. A., & Birchler, J. A. (2020). The Gene Balance Hypothesis: Epigenetics and Dosage Effects in Plants. Methods in Molecular Biology (Clifton, N.J.), 2093, 161–171. https://doi.org/10.1007/978-1-0716-0179-2_12

2016-2020 : Laëtitia Herman, thesis defense: 22/09/2020 « Caractérisation moléculaire du rôle de FOXL2 et de ses partenaires dans l’ovaire sain et pathologique »

2012-2015 : Laurianne Bessière, thesis defense: 16/09/2015 « Exploration génomique et fonctionnelle des tumeurs des cellules de la granulosa ovarienne »

2009-2013 : Adrien Georges, thesis defense: 28/06/2013 « FOXL2 : un déterminant de la signalisation dans l’ovaire »

2007-2011 : Bérénice Benayoun, thesis defense: 28/01/2011 « FOXL2 : un facteur de transcription essentiel de l’ovaire, à l’interface entre la réponse au stress cellulaire et la suppression tumorale »

2006-2009 : Aurélie Dipiétromaria, thesis defense: 28/09/2009 « Etudes des conséquences fonctionnelles des mutations de FOXL2 : gène impliqué dans le syndrome du BPES »

2005-2008 : Franck Batista Pelaez, thesis defense: 13/06/2008 « Les cibles transcriptionnelles de FOXL2, un facteur de transcription impliqué dans le développement et le maintien de la fonction ovarienne »

2005-2008 : Lara Moumné, thesis defense: 14/05/2008 « Etude fonctionnelle des mutations affectant FOXL2 : un acteur clé du développement de l’ovaire chez les vertébrés »

2002-2006 : Julie Cocquet thesis defense: 2006 « Evolution, expression et structure de FOXL2, un gène impliqué dans la fertilité féminine »

Studies on adult ovarian granulosa cell tumours (AGCTs) and the FOXL2 transcription factor: Team of E. de Baere, Ghent Belgium. Team of N. Binart, Kremlin-Bicêtre, France. F. Poulat, Montpellier, France. Team of M. Anttonen, Helsinki, Finland. Team D. Huntsman, Vancouver, Canada. Team of Alberto Pendas, Salamanca, Spain.

Studies on juvenile ovarian granulosa cell tumours (JGCTs) and the AKT1 oncoprotein: S. Sarnacki and L. Galmiche, Paris. N. Kalfa and C. Sultan, Montpellier. J. Prat and E. d’Angelo, Barcelona, Spain. Malcolm Donaldson, Glasgow, United Kingdom.

Studies on genes involved in premature ovarian failure: Maria Isabel Alvarez-Mora and Montserrat Mila, Barcelona, Spain. Gabriel Livera’s team, Fontenay aux Roses, France. Johnny S. Younis, Safed, Israel. Team of Stavit Shalev, Afula, Israel. Alberto Pendas’ team, Salamanca, Spain.

Translated with www.DeepL.com/Translator (free version)

1) ANR (National Agency for Research) : OVARYPROTECT : Interaction entre la signalisation PKA et TRIM28 dans la maintenance et la pathologie ovarienne

2) GEFLUC (Groupement des Entreprises Françaises dans la Lutte contre le Cancer): Ovarian cancer: FOXL2-C134W impact on cell-cell or cell-ECM adhesion.