Polarity and Morphogenesis


Our research team aims to elucidate the molecular mechanisms that control cell polarity and tissue morphogenesis in relation with the cytoskeleton and in particular with the microtubule network.

Keywords: Cell polarity, morphogenesis, microtubules, asymmetric transport, phospholipids, PAR protein complexes

+33 (0)157278076     antoine.guichet(at)ijm.fr     @GuichetLab

The understanding of the mechanisms, which orchestrate tissue and organ formation and which control their architecture maintenance, is a fundamental question in biology. Tissue formation and associated homeostasis are coordinated through cellular processes that include cell polarity, cell adhesion and motility. The understanding of these processes is also essential to better understand the molecular mechanisms controlling the development of pathologies such as cancer.

Our research team aims to elucidate the molecular mechanisms that control cell polarity and tissue morphogenesis in relation with the cytoskeleton and in particular with the microtubule network. To do so we are using Drosophila development as model system and we focus our research especially on two axes.

  1. At a cellular level, by exploring cytoskeleton requirement for the oocyte polarity establishment during oogenesis. We are investigating the molecular mechanisms involved in protein and mRNA asymmetric transport and those required for the asymmetric positioning of the nucleus.
  2. At a tissue level, by studying cytoskeleton requirement in tissue morphogenesis. We are looking for the molecular processes controlling collective cell migration required for the establishment of the reparatory system during embryogenesis.

We are using both conventional and innovative methodologies by combining genetic, biophysics and cell biology technics. Furthermore, live imaging associated with advanced light microscopy and electron microscopy are the core our experiments.

Nuclear migration in the Drosophila oocyte

Membrane organisation in the Drosophila oocyte

Collective migration of tracheal
cells in the Drosophila embryo


The research topics of the team:

* Identification of mechanisms controlling the asymmetric positioning of the nucleus in the oocyte.

* Identification and characterisation of the different microtubule networks required for the oocyte polarisation.

* Relationship between the lipid domains connected to phosphatidylinositol(4,5) biphosphate and the polarity proteins in the intracellular organisation and the polarized transport.

* Characterisation of the cytoskeleton requirement, microtubules and actin, in the collective cell migration process controlling the formation of the tracheal branches in the embryo.

Illustration 1

Nuclear migration in the Drosophila oocyte

Membrane organisation in the Drosophila oocyte

Illustration 3

Collective migration of tracheal cells in the Drosophila embryo

Group Leader:

Phone : +33 (0)157278076+33 (0)157278087
Email : antoine.guichet(at)ijm.fr



Frédéric BERNARD Researcher
Véronique BRODU Researcher
Sylvain BRUN Researcher
Sandra CLARET Researcher
Jean-Antoine LEPESANT Emeritus Researcher
Sandra CARVALHO PhD Student

Dynein-mediated transport and membrane trafficking control PAR3 polarised distribution.

Jouette J, Guichet A, Claret SB. Elife. 2019 Jan 23;8:e40212. doi: 10.7554/eLife.40212. PMID: 30672465 Free PMC article.


Distinct molecular cues ensure a robust microtubule-dependent nuclear positioning in the Drosophila oocyte.

Tissot N, Lepesant JA, Bernard F, Legent K, Bosveld F, Martin C, Faklaris O, Bellaïche Y, Coppey M, Guichet A. Nat Commun. 2017 Apr 27;8:15168. doi: 10.1038/ncomms15168. PMID: 28447612 Free PMC article.


Microtubule-dependent apical restriction of recycling endosomes sustains adherens junctions during morphogenesis of the Drosophila tracheal system.

Le Droguen PM, Claret S, Guichet A, Brodu V. Development. 2015 Jan 15;142(2):363-74. doi: 10.1242/dev.113472. PMID: 25564624


PI(4,5)P2 produced by the PI4P5K SKTL controls apical size by tethering PAR-3 in Drosophila epithelial cells.

Claret S, Jouette J, Benoit B, Legent K, Guichet A.Curr Biol. 2014 May 19;24(10):1071-9. doi: 10.1016/j.cub.2014.03.056. Epub 2014 Apr 24.PMID: 24768049


A developmentally regulated two-step process generates a noncentrosomal microtubule network in Drosophila tracheal cells.

Brodu V, Baffet AD, Le Droguen PM, Casanova J, Guichet A. Dev Cell. 2010 May 18;18(5):790-801. doi: 10.1016/j.devcel.2010.03.015. PMID: 20493812


The centrosome-nucleus complex and microtubule organization in the Drosophila oocyte.

Januschke J, Gervais L, Gillet L, Keryer G, Bornens M, Guichet A.Development. 2006 Jan;133(1):129-39. doi: 10.1242/dev.02179. Epub 2005 Nov 30.PMID: 16319114


PIP5K-dependent production of PIP2 sustains microtubule organization to establish polarized transport in the Drosophila oocyte.

Gervais L, Claret S, Januschke J, Roth S, Guichet A. Development. 2008 Dec;135(23):3829-38. doi: 10.1242/dev.029009. Epub 2008 Oct 23. PMID: 18948416


Jamieson, A., Carmagnini, A., Howard-McCombe, J., Doherty, S., Hirons, A., Dimopoulos, E., Lin, A. T., Allen, R., Anderson-Whymark, H., Barnett, R., Batey, C., Beglane, F., Bowden, W., Bratten, J., De Cupere, B., Drew, E., Foley, N. M., Fowler, T., Fox, A., … Frantz, L. (2023). Limited historical admixture between European wildcats and domestic cats. Current Biology, 33(21), 4751-4760.e14. https://doi.org/10.1016/j.cub.2023.08.031
Bennett, E. A., Parasayan, O., Prat, S., Péan, S., Crépin, L., Yanevich, A., Grange, T., & Geigl, E.-M. (2023). Genome sequences of 36,000- to 37,000-year-old modern humans at Buran-Kaya III in Crimea. Nature Ecology & Evolution, 1–13. https://doi.org/10.1038/s41559-023-02211-9
Gorgé, O., Bennett, E. A., Massilani, D., Daligault, J., Geigl, E.-M., & Grange, T. (2023). Analysis of Ancient Microbial DNA. Methods in Molecular Biology (Clifton, N.J.), 2605, 103–131. https://doi.org/10.1007/978-1-0716-2871-3_6
Bennett, E. A., Weber, J., Bendhafer, W., Champlot, S., Peters, J., Schwartz, G. M., Grange, T., & Geigl, E.-M. (2022). The genetic identity of the earliest human-made hybrid animals, the kungas of Syro-Mesopotamia. Science Advances, 8(2), eabm0218. https://doi.org/10.1126/sciadv.abm0218
Geigl, E.-M. (2021). PCR et paléogénétique : pour le meilleur et pour le pire. Bulletin de l’Académie Nationale de Médecine, 205(4), 389–395. https://doi.org/10.1016/j.banm.2020.12.022
Guimaraes, S., Arbuckle, B. S., Peters, J., Adcock, S. E., Buitenhuis, H., Chazin, H., Manaseryan, N., Uerpmann, H.-P., Grange, T., & Geigl, E.-M. (2020). Ancient DNA shows domestic horses were introduced in the southern Caucasus and Anatolia during the Bronze Age. Science Advances, 6(38), eabb0030. https://doi.org/10.1126/sciadv.abb0030
Brunel, S., Bennett, E. A., Cardin, L., Garraud, D., Barrand Emam, H., Beylier, A., Boulestin, B., Chenal, F., Ciesielski, E., Convertini, F., Dedet, B., Desbrosse-Degobertiere, S., Desenne, S., Dubouloz, J., Duday, H., Escalon, G., Fabre, V., Gailledrat, E., Gandelin, M., … Pruvost, M. (2020). Ancient genomes from present-day France unveil 7,000 years of its demographic history. Proceedings of the National Academy of Sciences of the United States of America, 117(23), 12791–12798. https://doi.org/10.1073/pnas.1918034117
Al Amir Dache, Z., Otandault, A., Tanos, R., Pastor, B., Meddeb, R., Sanchez, C., Arena, G., Lasorsa, L., Bennett, A., Grange, T., El Messaoudi, S., Mazard, T., Prevostel, C., & Thierry, A. R. (2020). Blood contains circulating cell-free respiratory competent mitochondria. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 34(3), 3616–3630. https://doi.org/10.1096/fj.201901917RR
Stoetzel, E., Lalis, A., Nicolas, V., Aulagnier, S., Benazzou, T., Dauphin, Y., El Hajraoui, M. A., El Hassani, A., Fahd, S., Fekhaoui, M., Geigl, E.-M., Lapointe, F.-J., Leblois, R., Ohler, A., Nespoulet, R., & Denys, C. (2019). Quaternary terrestrial microvertebrates from mediterranean northwestern Africa: State-of-the-art focused on recent multidisciplinary studies. Quaternary Science Reviews, 224, 105966. https://doi.org/10.1016/j.quascirev.2019.105966
Bennett, E. A., Prat, S., Péan, S., Crépin, L., Yanevich, A., Puaud, S., Grange, T., & Geigl, E.-M. (2019). The origin of the Gravettians: genomic evidence from a 36,000-year-old Eastern European. bioRxiv. https://doi.org/10.1101/685404
Geigl, E.-M., & Grange, T. (2018). Ancient DNA: The quest for the best. Molecular Ecology Resources, 18(6), 1185–1187. https://doi.org/10.1111/1755-0998.12931
Grange, T., Brugal, J.-P., Flori, L., Gautier, M., Uzunidis, A., & Geigl, E.-M. (2018). The Evolution and Population Diversity of Bison in Pleistocene and Holocene Eurasia: Sex Matters. Diversity, 10(3), 65. https://doi.org/10.3390/d10030065
Ottoni, C., Van Neer, W., De Cupere, B., Daligault, J., Guimaraes, S., Peters, J., Spassov, N., Prendergast, M. E., Boivin, N., Morales-Muñiz, A., Bălăşescu, A., Becker, C., Benecke, N., Boroneant, A., Buitenhuis, H., Chahoud, J., Crowther, A., Llorente, L., Manaseryan, N., … Geigl, E.-M. (2017). The palaeogenetics of cat dispersal in the ancient world. Nature Ecology & Evolution, 1(7), 1–7. https://doi.org/10.1038/s41559-017-0139
Guimaraes, S., Pruvost, M., Daligault, J., Stoetzel, E., Bennett, E. A., Côté, N. M.-L., Nicolas, V., Lalis, A., Denys, C., Geigl, E.-M., & Grange, T. (2017). A cost-effective high-throughput metabarcoding approach powerful enough to genotype 44 000 year-old rodent remains from Northern Africa. Molecular Ecology Resources, 17(3), 405–417. https://doi.org/10.1111/1755-0998.12565



Bennett, E. A., Crevecoeur, I., Viola, B., Derevianko, A. P., Shunkov, M. V., Grange, T., Maureille, B., & Geigl, E.-M. (2019). Morphology of the Denisovan phalanx closer to modern humans than to Neanderthals. Science Advances, 5(9), eaaw3950. https://doi.org/10.1126/sciadv.aaw3950



Loh, M., Guichet, A., & Bernard, F. (2021). Nuclear Migration in the Drosophila Oocyte. Journal of Visualized Experiments: JoVE, 171. https://doi.org/10.3791/62688
Bernard, F., Jouette, J., Durieu, C., Le Borgne, R., Guichet, A., & Claret, S. (2021). GFP-Tagged Protein Detection by Electron Microscopy Using a GBP-APEX Tool in Drosophila. Frontiers in Cell and Developmental Biology, 9, 719582. https://doi.org/10.3389/fcell.2021.719582
Jouette, J., Claret, S., & Guichet, A. (2017). Phosphoinositides and Cell Polarity in the Drosophila Egg Chamber. In M. Kloc (Ed.), Oocytes: Maternal Information and Functions (pp. 169–187). Springer International Publishing. https://doi.org/10.1007/978-3-319-60855-6_8
  • Julie Jouette (2017) : Phosphoinositides et contrôle de la polarité cellulaire : régulations croisées entre la PIP5K Skittles et les protéines de polarité PAR1 et PAR3.
  • Nicolas Tissot (2015) : Relation croisée entre le positionnement du noyau et l’organisation des microtubules dans la polarisation de l’ovocyte chez la drosophile : approche par microscopie optique ex-vivo et photomanipulation
  • Pierre-Marie Le Droguen (2013) : Rôle du réseau de microtubules lors de la morphogénèse du système trachéal dans l’embryon de drosophile
  • Alexandre Baffet (2010) : Organisation des microtubules et polarité cellulaire chez la Drosophile
  • Julien Compagnon (2008) : Etude du trafic vésiculaire au cours de l’ovogenèse chez la Drosophile
  • Louis Gervais (2006): Etude des relations entre la dynamique du réseau de microtubules et le transport polarisé dans l’ovocyte.
  • Jens Januschke (2005) : mRNA localization in the Drosophila oocyte

Nuclear Deformation in Eukaryotes, Projet Emergence en Recherche, IDEX Université Paris Cité (coordinateurs Fred Bernard et Sylvain Brun).