Cell Division and Reproduction

Julien DUMONT

During cell division, the chromosomes, which carry the genetic information, are distributed into two equal complements between the two daughter cells. During development, aneuploidy, which corresponds to the presence of an incorrect number of chromosomes, leads to the formation of embryos that are generally non-viable or with severe developmental defects. Our project aims to study the mechanisms that ensure the formation of oocytes and embryos containing the correct number of chromosomes. For this, we study the assembly mechanisms and the function of the cellular machinery allowing the correct distribution of chromosomes in meiosis and mitosis. Our approach is multidisciplinary and relies on state-of-the-art genetic, biochemical, cellular and microscopic approaches.

Keywords: Cell division, meiosis/mitosis, cytoskeleton, chromosome segregation, embryonic development.

+33 (0)157278049     julien.dumont(at)ijm.fr

Approximately 15% of couples are confronted with an infertility problem. The potential causes are the poor quality of the germ cells or gametes (sperm and oocyte), or an impaired embryo development. A major challenge in reproductive biology is to understand the mechanisms of these defects.

During cell division, the chromosomes, carriers of genetic information, are divided into two equal sets between the daughter cells. The faithful distribution of chromosomes is a fundamental element of the genetic stability of cells and organisms. Aneuploidy, which corresponds to the presence of an incorrect number of chromosomes, leads to the formation of embryos that are generally non-viable or show severe developmental defects. Our project aims to study the mechanisms that ensure the formation of oocytes and embryos with the correct number of chromosomes, which is essential for reproduction.

We study the mechanisms of assembly and the functioning of the cellular machinery allowing the correct distribution of chromosomes in meiosis and mitosis. This machinery is composed of a spindle formed by microtubules (green in figure 1), some of which contact chromosomes (magenta). Interactions between spindle microtubules and chromosomes are central to the process of chromosome segregation and are regulated differently in meiosis and in mitosis.

Our approach is multidisciplinary and relies on state-of-the-art genetic, biochemical, cellular and microscopic tools. Our favorite model system is the nematode worm Caenorhabditis elegans, which shares the vast majority of its genes and key mechanisms of reproduction and development with mammals. We also study “non-model” nematodes to develop an evolutionary understanding of the mechanisms of cell division in the context of reproduction.

 

Figure 1: Immunofluorescent labeling of an oocyte meiotic spindle (left) and a zygote mitotic spindle (right) in C. elegans. Microtubules are in green, chromosomes in magenta and the two centrosomes that form the poles of the spindle in mitosis are in yellow. Note the absence of centrosomes at the poles of the meiotic spindle and its characteristic “barrel” shape.

 

AXIS 1/ MEIOTIC DIVISIONS OF THE OOCYTE:

 

In mitosis, spindle microtubules are assembled from centrosomes (Figure 1, yellow). In oocytes, centrosomes are eliminated early on during meiosis. Thus, spindle assembly in oocytes involves atypical mechanisms that are not well understood. We have developed an in utero microscopy approach on live nematodes that allowed us to describe the key steps of acentrosomal spindle formation in the C. elegans oocyte (Video 1).

 

Vidéo 1

 

In order to determine the actors involved, we combine this confocal imaging method with a systematic loss-of-function approach of microtubule-associated proteins and microtubule motors. We also use an in vitro Total Internal Reflection Microscopy (TIRF) approach on recombinant proteins and individual microtubules (Figure 2). Our goal is to determine the network of actors required for spindle formation in the absence of centrosome, as well as to highlight the functional interactions between these actors.

 

Figure 2

AXIS 2/ CHROMOSOME SEGREGATION IN THE OOCYTE:

 

Acentrosomal spindles have a characteristic “barrel” shape (Figure 1), with rounded poles, due to the absence of astral microtubules (microtubules that normally connect the spindle poles to the cell cortex during mitosis). This atypical shape induces specific mechanisms of meiotic chromosome segregation. Using a multimodal microscopy approach, combining live optical microscopy of C. elegans oocytes, laser ablation on live oocytes and tomographic electron microscopy, we have demonstrated an original mechanism of chromosome segregation relying on “pushing” forces exerted by microtubules (Video 2 and Figure 3). We combine the different microscopy approaches with targeted loss-of-function of key players to determine the molecular mechanisms.

 

Figure 3

 

Video2

 

We have also shown that the “pushing” segregation is not strictly dependent on kinetochores, multiprotein complexes that assemble on chromosomes to allow microtubule binding. Nevertheless, these are important to ensure the fidelity of the segregation mechanism and to avoid oocyte aneuploidy. We have recently developed a method of live microscopy of two fluorescence channels simultaneously with fast Z-scan (Figure 4).

 

Figure 4

 

This method allows us to acquire the full volume of the meiotic spindle and segregating chromosomes during the entire first meiotic division. This allows us to follow the position of each chromosome individually during the orientation, alignment and segregation steps on the meiotic spindle. This approach allows us to perform a quantitative analysis of the function of candidate proteins and to determine their importance for chromosome segregation in the C. elegans oocyte.

 

AXIS 3/ EVOLUTION OF THE MECHANISMS OF MEIOTIC DIVISION IN NEMATODES:

 

Defects in chromosome segregation during meiosis can lead to aneuploidy of gametes and embryos, which is a major cause of birth defects and spontaneous abortions in humans. However, although essential for the reproduction of multicellular organisms and thus for the continuity of species, the key principles governing meiosis, and in particular meiotic chromosome segregation in oocytes, are still poorly understood. One of the main reasons for this lack of knowledge is the diversity of molecular scenarios that have been adopted during evolution to regulate chromosome segregation, particularly in oocytes. Indeed, although meiosis is highly conserved in eukaryotes, deviations from the “norm” are ubiquitous and may provide important information about the evolutionary significance of meiotic mechanisms. It is therefore of utmost importance to appreciate the true diversity of meiotic features in nature, considering both well-characterized model organisms (such as C. elegans) and non-model organisms. Nematodes represent an ideal situation in this respect: their remarkable adaptability to various ecological niches has been accompanied by extreme plasticity in genome organization but also in reproductive and meiotic strategies. We have recently started the analysis of oocyte meiosis in non-model nematode species with specific and atypical characteristics that may have an impact on meiotic chromosome segregation (Video 3).

 

Video3

 

AXIS 4/ THE FIRST MITOTIC DIVISION OF THE C. ELEGANS ZYGOTE:

 

In the C. elegans zygote, during mitosis, microtubules emanating from the spindle poles contact either the embryonic cortex (astral microtubules) or the chromosomes via the kinetochores (kinetochore microtubules). Pulling forces exerted by astral microtubules are transmitted to chromosomes by kinetochore microtubules allowing the segregation of sister chromatids in anaphase (Video 4).

 

Video4

 

Kinetochores are multiprotein complexes composed of several dozen proteins. Among these, the kinase BUB-1, the HCP-½ proteins, and the microtubule-associated protein CLS-2, form a module involved in the control of kinetochore microtubule dynamics. We have highlighted the roles of this module in the correct alignment and attachment of chromosomes in metaphase, and in the formation of the anaphase central spindle. We continue to analyze the different functions of the BUB-1/HCP-½/CLS-2 module during the first mitotic division of the C. elegans zygote. For this purpose, we are developing a targeted mutagenesis approach coupled to confocal microscopy on living embryos. This approach allows us to perform a quantitative analysis of the role of the different actors through the various stages of mitosis (Figure 5).

 

Figure 5

Group Leader:

Julien DUMONT
Phone : +33 (0)157278049
Email : julien.dumont (at) ijm.fr

 

Membres de l’équipe :

 

Laura BELLUTTI Postdoc
Layla EL MOSSADEQ PhD Student
Aurélien PERRIER PhD Student
Alison GERVAIS Biology engineer
Nicolas MACAISNE Postdoc
Gilliane MATON Assistant professor
Yasmine DJEMAI Intern

Depuis 2015 :

2023

  • Gareil N*, Gervais A*, Macaisne N, Chevreux G, Canman JC, Andreani J & Dumont J. An unconventional TOG domain is required for CLASP localization.Current Biology 33(16):3522-3528.e7 doi: 10.1016/j.cub.2023.07.009 (2023)
  • Lignieres L, Senecaut N, Dang T, Bellutti L, Hamon M, Terrier S, Legros V, Chevreux G, Lelandais G, Mege RM, Dumont J & Camadro JM. Extending the Range of SLIM-labeling Applications: From Human Cell Lines in Culture to Caenorhabditis elegans Whole-organism Labeling. J Proteome Research, 22(3):996-1002. doi: 10.1021/acs.jproteome.2c00699 (2023)
  • Rocha H, Simões PA, Budrewicz J, Lara-Gonzalez P, Carvalho AX, Dumont J, Desai A, Gassmann R. Nuclear-enriched protein phosphatase 4 ensures outer kinetochore assembly prior to nuclear dissolution. J Cell Biol,222(3):e202208154 doi: 10.1083/jcb.202208154 (2023)
  • Pitayu-Nugroho, L., Aubry, M., Laband, K., Geoffroy, H., Ganeswaran, T., Primadhanty, A., Canman, J. C., & Dumont, J. (2023). Kinetochore component function in C. elegans oocytes revealed by 4D tracking of holocentric chromosomes. Nature Communications14(1), 4032. https://doi.org/10.1038/s41467-023-39702-z
  • Macaisne N*, Bellutti L*, Laband K*, Edwards F*, Pitayu-Nugroho L, Gervais A, Ganeswaran T, Geoffroy H, Maton G, Canman JC, Lacroix BDumont J.Synergistic stabilization of microtubules by BUB-1, HCP-1 and CLS-2 controls microtubule pausing and meiotic spindle assembly. eLife, 12:e82579. doi: 10.7554/eLife.82579 (2023)

2022

  • Lacroix, B. & Dumont, J. Spatial and Temporal Scaling of Microtubules and Mitotic Spindles. Cells, 11(2):248 (2022)
  • Hirsch, S., Edwards, F., Shirasu-Hiza, M., Dumont, J. & Canman, J.C. Functional Midbody Assembly in the Absence of a Central Spindle. J Cell Biol, 221(3):e202011085 (2022)

 2020

Palenzuela, H., Lacroix, B., Sallé, J., Minami, K., Shima, T., Jegou, A., Romet-Lemonne, G. & Minc, N. In vitro reconstitution od dynein force exertion in a bulk viscous medium. Curr. Biol, 30(22):4534-4540.e7. (2020), doi: 10.1016/j.cub.2020.08.078

2019

Cabral, G., Laos, T., Dumont, J., & Dammermann A. Differential Requirements for Centrioles in Mitotic Centrosome Growth and Maintenance. Dev. Cell, 50, (3):355-366 (2019), doi: 10.1016/j.devcel.2019.06.004

2018

  • Edwards, F., Maton, G., Gareil, N., Canman, J.C. & Dumont, J. BUB-1 promotes amphitelic chromosome biorientation via multiple activities at the kinetochore. eLife 2018;7:e40690 (2018), doi: 10.7554/eLife.40690
  • Hirsch, S.M., Sundaramoorthy, S., Davies, T., Zhuravlev, Y., Waters, J.C., Shirasu-Hiza, M., Dumont, J. & Canman, J.C.  FLIRT: Fast Local InfraRed Thermogenetics for subcellular control of protein function. Nature Methods, (2018), doi: 10.1038/s41592-018-0168-y
  • Davies, T., Kim, H.X., Romano Spica, N., Lesea-Pringle, B.J., Dumont, J., Shirasu-Hiza, M. & Canman, J.C. Cell-intrinsic and extrinsic mechanisms promote cell-type specific cytokinetic diversity. eLife, 2018;7:e36204 (2018), doi: 10.7554/eLife.36204
  • Laband, K., Lacroix, B., Edwards, F., Canman, J.C. & Dumont, J. Live imaging of C. elegans oocytes and early embryos. Methods Cell Biol, 145:217-236 (2018), doi: 10.1016/bs.mcb.2018.03.025
  • Lacroix, B., Letort, G., Pitayu, L., Sallé, J., Stefanutti, M., Maton, G., Ladouceur, AM., Canman, J.C., Maddox, PS., Maddox, AS., Minc, N., Nédélec, F. & Dumont, J. Microtubule dynamics scale with cell size to set spindle length and assembly timing. Dev Cell, 45:496-511 e496. (2018), doi: 10.1016/j.devcel.2018.04.022 Highlighted in Dev Cell 45:421-423, (2018) Highlighted on F1000 #eval793546852
  • Berto, A., Yu, J., Morchoisne-Bolhy, S., Bertipaglia, C., Vallee, R., Dumont, J., Ochsenbein, F., Guerois, R. & Doye, V. Disentangling the molecular determinants for Cenp-F localization to nuclear pores and kinetochores. EMBO Report, 19(5). (2018), doi: 10.15252/embr.201744742

2017

  • Laband, K., Le Borgne, R., Edwards, F., Stefanutti, M., Canman, J.C., Verbavatz, J-M. & Dumont, J. Chromosome segregation occurs by microtubule pushing in oocytes Nat Comm, Nov 14;8(1):1499, (2017), doi: 10.1038/s41467-017-01539-8
  • Gigant, E.*, Stefanutti, M.*, Laband, K., Gluszek-Kustusz, A., Edwards, F., Maton, G., Lacroix, B., Canman, J.C., Welburn, J. & Dumont, J. Inhibition of ectopic microtubule assembly by the kinesin-13 KLP-7MCAK prevents chromosome segregation and cytokinesis defects in oocytes Development, 144(9):1674-1686, (2017), doi: 10.1242/dev.147504
  • Luscan, R., Mechaussier, S., Paul, A., Tian, G., Gérard, X., Loundon, N., Defoort-Delhemmes, S., Audo, I., Dumont, J., Goudin, N., Garfa-Traoré, M., Bras, M., Pouliet, A., Attié-Bittach, T., Boddaert, N., Lyonnet, S., Kaplan, J., Cowan, N.J., Rozet, J-M., Marlin, S. & Perrault, I. Mutations in TUBB4B cause a distinctive sensorineural disease Am J Hum Genet, 101(6):1006-1012 (2017), doi: 10.1016/j.ajhg.2017.10.010
  • Davies, T., Sundaramoorthy, S., Jordan, S.N., Shirasu-Hiza, M., Dumont, J., and Canman, J.C. Using fast-acting temperature sensitive mutants to study cell division in C. elegans. Methods Cell Biol, 137:283-306 (2017), doi: 10.1016/bs.mcb.2016.05.004
  • Martino, L., Morchoisne-Bolhy, S., Cheerambathur, D., Van Hove, L., Dumont, J., Joly, N., Desai, A., Doye, V. & Pintard, L. Channel Nucleoporins Recruit PLK-1 to Nuclear Pore Complexes to Direct Nuclear Envelope Breakdown in C. elegans Dev Cell(2017), doi: 10.1016/j.devcel.2017.09.019
  • Zhuravlev, Y., Hirsch, S., Jordan, S., Dumont, J., Shirasu-Hiza, M. & Canman, J.C. CYK-4 regulates Rac, but not Rho, during cytokinesis. MBoC, 1;28(9):1258-1270 (2017), doi: 10.1091/mbc.E17-01-0020
  • Sundaramoorthy, S., Garcia, B.A., Hirsch, S., Park, J.H., Davies, T., Dumont, J., Shirasu-Hiza, M., Kummel, A. & Canman, J.C. Low efficiency upconversion nanoparticles for high-resolution coalignment of near-infrared and visible light paths on a light microscope. ACS Appl. Mater. Interfaces, 9 (9), pp 7929–7940 (2017), doi: 10.1021/acsami.6b15322

2016

  • Joly, N., Martino, L., Gigant, E., Dumont, J., & Pintard, L. Microtubule-severing activity of AAA-ATPase Katanin is essential for female meiotic spindle assembly. Development, 143(19):3604-3614 (2016), doi: 10.1242/dev.140830
  • Rhebergen, T., Flor, Orgogozo, V., Dumont, J., Schilthuizen, M. & Lang, M. Drosophila pachea asymmetric lobes are part of a grasping device and stabilize one-sided mating. BMC Evolutionary Biology, 16:176 (2016), doi: 10.1186/s12862-016-0747-4
  • Hattersley, N., Cheerambathur, D., Moyle, M., Stefanutti, M., Richardson, A., Lee, K.Y., Dumont, J., Oegema, K., & Desai, A. A Nucleoporin Docks Protein Phosphatase 1 to Direct Meiotic Chromosome Segregation and Nuclear Assembly. Dev Cell, 35, (5):463-477 (2016), doi: 10.1016/j.devcel.2016.08.006
  • Lacroix, B., Ryan, J., Dumont, J., Maddox, P.S. & Maddox, A.S. Identification of microtubule growth deceleration and its regulation by conserved and novel proteins. MBoC, 1;27(9):1479-87 (2016), doi: 10.1091/mbc.E16-01-0056
  • Jordan, S.N., Davies, T., Zhuravlev, Y., Dumont, J.*, Shirasu-Hiza, M.* & Canman, J.C. Cortical PAR Polarity proteins promote robust cytokinesis during asymmetric cell division. J Cell Biol, 212, (1):39-49 (2016), doi: 10.1083/jcb.201510063

2015

  • Maton, G.*, Edwards, F.*, Lacroix, B., Stefanutti, M., Laband, K., Lieury, T., Kim, T., Espeut, J., Canman, J.C., & Dumont, J. Kinetochore components are required for central spindle assembly. Nat Cell Biol, 17(5):697-705 (2015), doi: 10.1038/ncb3150. Dispatched in Current Biology 25, R554–R557, (2015).
  • Dumont, J. Aurora B/C in Meiosis: Correct Me If I’m Right. Dev Cell, 33, 499-501 (2015), doi: 10.1016/j.devcel.2015.05.018
  • Edwards, F., Maton, G., Dumont, J. Versatile Kinetochore Components Control Central Spindle Assembly. Cell Cycle, 14:16, 1-2 (2015), doi: 10.1080/15384101.2015.1062329

Publications

Gareil, N., Gervais, A., Macaisne, N., Chevreux, G., Canman, J. C., Andreani, J., & Dumont, J. (2023). An unconventional TOG domain is required for CLASP localization. Current Biology, 33(16), 3522-3528.e7. https://doi.org/10.1016/j.cub.2023.07.009
Pitayu-Nugroho, L., Aubry, M., Laband, K., Geoffroy, H., Ganeswaran, T., Primadhanty, A., Canman, J. C., & Dumont, J. (2023). Kinetochore component function in C. elegans oocytes revealed by 4D tracking of holocentric chromosomes. Nature Communications, 14(1), 4032. https://doi.org/10.1038/s41467-023-39702-z
Rocha, H., Simões, P. A., Budrewicz, J., Lara-Gonzalez, P., Carvalho, A. X., Dumont, J., Desai, A., & Gassmann, R. (2023). Nuclear-enriched protein phosphatase 4 ensures outer kinetochore assembly prior to nuclear dissolution. The Journal of Cell Biology, 222(3), e202208154. https://doi.org/10.1083/jcb.202208154
Lignieres, L., Sénécaut, N., Dang, T., Bellutti, L., Hamon, M., Terrier, S., Legros, V., Chevreux, G., Lelandais, G., Mège, R.-M., Dumont, J., & Camadro, J.-M. (2023). Extending the Range of SLIM-Labeling Applications: From Human Cell Lines in Culture to Caenorhabditis elegans Whole-Organism Labeling. Journal of Proteome Research, 22(3), 996–1002. https://doi.org/10.1021/acs.jproteome.2c00699
Macaisne, N., Bellutti, L., Laband, K., Edwards, F., Pitayu-Nugroho, L., Gervais, A., Ganeswaran, T., Geoffroy, H., Maton, G., Canman, J. C., Lacroix, B., & Dumont, J. (2023). Synergistic stabilization of microtubules by BUB-1, HCP-1, and CLS-2 controls microtubule pausing and meiotic spindle assembly. ELife, 12, e82579. https://doi.org/10.7554/eLife.82579
Macaisne, N., Touzon, M. S., Rajkovic, A., & Yanowitz, J. L. (2022). Modeling primary ovarian insufficiency-associated loci in C. elegans identifies novel pathogenic allele of MSH5. Journal of Assisted Reproduction and Genetics, 39(6), 1255–1260. https://doi.org/10.1007/s10815-022-02494-0
Hirsch, S. M., Edwards, F., Shirasu-Hiza, M., Dumont, J., & Canman, J. C. (2022). Functional midbody assembly in the absence of a central spindle. The Journal of Cell Biology, 221(3), e202011085. https://doi.org/10.1083/jcb.202011085
Cabral, G., Laos, T., Dumont, J., & Dammermann, A. (2019). Differential Requirements for Centrioles in Mitotic Centrosome Growth and Maintenance. Developmental Cell, 50(3), 355-366.e6. https://doi.org/10.1016/j.devcel.2019.06.004
Edwards, F., Maton, G., Gareil, N., Canman, J. C., & Dumont, J. (2018). BUB-1 promotes amphitelic chromosome biorientation via multiple activities at the kinetochore. ELife, 7, e40690. https://doi.org/10.7554/eLife.40690
Hirsch, S. M., Sundaramoorthy, S., Davies, T., Zhuravlev, Y., Waters, J. C., Shirasu-Hiza, M., Dumont, J., & Canman, J. C. (2018). FLIRT: fast local infrared thermogenetics for subcellular control of protein function. Nature Methods, 15(11), 921–923. https://doi.org/10.1038/s41592-018-0168-y
Davies, T., Kim, H. X., Romano Spica, N., Lesea-Pringle, B. J., Dumont, J., Shirasu-Hiza, M., & Canman, J. C. (2018). Cell-intrinsic and -extrinsic mechanisms promote cell-type-specific cytokinetic diversity. ELife, 7, e36204. https://doi.org/10.7554/eLife.36204
Lacroix, B., Letort, G., Pitayu, L., Sallé, J., Stefanutti, M., Maton, G., Ladouceur, A.-M., Canman, J. C., Maddox, P. S., Maddox, A. S., Minc, N., Nédélec, F., & Dumont, J. (2018). Microtubule Dynamics Scale with Cell Size to Set Spindle Length and Assembly Timing. Developmental Cell, 45(4), 496-511.e6. https://doi.org/10.1016/j.devcel.2018.04.022
Berto, A., Yu, J., Morchoisne-Bolhy, S., Bertipaglia, C., Vallee, R., Dumont, J., Ochsenbein, F., Guerois, R., & Doye, V. (2018). Disentangling the molecular determinants for Cenp-F localization to nuclear pores and kinetochores. EMBO Reports, 19(5), e44742. https://doi.org/10.15252/embr.201744742
Laband, K., Lacroix, B., Edwards, F., Canman, J. C., & Dumont, J. (2018). Live imaging of C. elegans oocytes and early embryos. Methods in Cell Biology, 145, 217–236. https://doi.org/10.1016/bs.mcb.2018.03.025
Luscan, R., Mechaussier, S., Paul, A., Tian, G., Gérard, X., Defoort-Dellhemmes, S., Loundon, N., Audo, I., Bonnin, S., LeGargasson, J.-F., Dumont, J., Goudin, N., Garfa-Traoré, M., Bras, M., Pouliet, A., Bessières, B., Boddaert, N., Sahel, J.-A., Lyonnet, S., … Perrault, I. (2017). Mutations in TUBB4B Cause a Distinctive Sensorineural Disease. American Journal of Human Genetics, 101(6), 1006–1012. https://doi.org/10.1016/j.ajhg.2017.10.010
Laband, K., Le Borgne, R., Edwards, F., Stefanutti, M., Canman, J. C., Verbavatz, J.-M., & Dumont, J. (2017). Chromosome segregation occurs by microtubule pushing in oocytes. Nature Communications, 8(1), 1499. https://doi.org/10.1038/s41467-017-01539-8
Martino, L., Morchoisne-Bolhy, S., Cheerambathur, D. K., Van Hove, L., Dumont, J., Joly, N., Desai, A., Doye, V., & Pintard, L. (2017). Channel Nucleoporins Recruit PLK-1 to Nuclear Pore Complexes to Direct Nuclear Envelope Breakdown in C. elegans. Developmental Cell, 43(2), 157-171.e7. https://doi.org/10.1016/j.devcel.2017.09.019
Gigant, E., Stefanutti, M., Laband, K., Gluszek-Kustusz, A., Edwards, F., Lacroix, B., Maton, G., Canman, J. C., Welburn, J. P. I., & Dumont, J. (2017). Inhibition of ectopic microtubule assembly by the kinesin-13 KLP-7 prevents chromosome segregation and cytokinesis defects in oocytes. Development, 144(9), 1674–1686. https://doi.org/10.1242/dev.147504
Zhuravlev, Y., Hirsch, S. M., Jordan, S. N., Dumont, J., Shirasu-Hiza, M., & Canman, J. C. (2017). CYK-4 regulates Rac, but not Rho, during cytokinesis. Molecular Biology of the Cell, 28(9), 1258–1270. https://doi.org/10.1091/mbc.e17-01-0020
Sundaramoorthy, S., Badaracco, A. G., Hirsch, S. M., Park, J. H., Davies, T., Dumont, J., Shirasu-Hiza, M., Kummel, A. C., & Canman, J. C. (2017). Low efficiency upconversion nanoparticles for high-resolution coalignment of near-infrared and visible light paths on a light microscope. ACS Applied Materials & Interfaces, 9(9), 7929–7940. https://doi.org/10.1021/acsami.6b15322

 

Review

Lacroix, B., & Dumont, J. (2022). Spatial and Temporal Scaling of Microtubules and Mitotic Spindles. Cells, 11(2), 248. https://doi.org/10.3390/cells11020248

 

Book chapter

Chenevert, J., Robert, M. L. V., Sallé, J., Cacchia, S., Lorca, T., Castro, A., McDougall, A., Minc, N., Castagnetti, S., Dumont, J., & Lacroix, B. (2024). Measuring Mitotic Spindle and Microtubule Dynamics in Marine Embryos and Non-model Organisms. In A. Castro & B. Lacroix (Eds.), Cell Cycle Control: Methods and Protocols (pp. 187–210). Springer US. https://doi.org/10.1007/978-1-0716-3557-5_12
Laband, K., Lacroix, B., Edwards, F., Canman, J. C., & Dumont, J. (2018). Live imaging of C. elegans oocytes and early embryos. Methods in Cell Biology, 145, 217–236. https://doi.org/10.1016/bs.mcb.2018.03.025
Davies, T., Sundaramoorthy, S., Jordan, S. N., Shirasu-Hiza, M., Dumont, J., & Canman, J. C. (2017). Chapter 17 - Using fast-acting temperature-sensitive mutants to study cell division in Caenorhabditis elegans. In A. Echard (Ed.), Methods in Cell Biology (Vol. 137, pp. 283–306). Academic Press. https://doi.org/10.1016/bs.mcb.2016.05.004
  • Frances Edwards        from Sept. 2014 to Jul. 2018
  • Kimberley Laband      from Sept. 2014 to Nov. 2017
  • Layla El Mossadeq     from Sept 2018 to Dec. 2022).

Jean-Marc Verbavatz (IJM) ; Lionel Pintard (IJM) ; Julie C. Canman (Columbia University, NYC, USA) ; Marie Delattre, (ENS, France) ; Peter Askjaer, (CABD, Spain) ; Peter Meister, (University of Bern, Switzerland)

European Research Council ; Mairie De Paris ; Fondation pour la Recherche Médicale ; Agence Nationale de la Recherche