Polarité et morphogenèse

Antoine GUICHET

Notre équipe de recherche vise à élucider les mécanismes qui contrôlent la polarité cellulaire et la morphogenèse tissulaire en relation avec le cytosquelette et en particulier avec le réseau de microtubules.

Mots-clés : Polarité cellulaire, morphogénèse, microtubules, transport asymétrique, phospholipides, PAR complexes

+33 (0)157278076     antoine.guichet(at)ijm.fr     @GuichetLab

La compréhension des mécanismes qui orchestrent la formation de tissus et d’organes et qui contrôlent le maintien de leur architecture est une question fondamentale en biologie. La formation des tissus et leur homéostasie sont coordonnées par des processus cellulaires incluant la polarité cellulaire, l’adhérence et la motilité. La compréhension de ces processus est aussi essentielle pour mieux comprendre le développement de pathologies comme le cancer.

Notre équipe de recherche vise à élucider les mécanismes qui contrôlent la polarité cellulaire et la morphogenèse tissulaire en relation avec le cytosquelette et en particulier avec le réseau de microtubules. Pour cela nous utilisons le développement de la drosophile comme modèle d’étude et nous concentrons notre recherche sur deux axes.

  1. Au niveau cellulaire, en étudiant le rôle du cytosquelette dans la mise en place de la polarité de l’ovocyte au cours de l’ovogenèse. Nous cherchons à déterminer les mécanismes impliqués dans le transport asymétrique de protéines et d’ARNs et ceux impliqués dans le positionnement asymétrique du noyau.
  2. Au niveau tissulaire, en étudiant l’implication du cytosquelette dans la morphogenèse tissulaire. Nous cherchons à identifier les mécanismes contrôlant la migration collective de cellules, assurant la formation du système respiratoire au cours de l’embryogénèse.

Les approches expérimentales utilisées au laboratoire combinent la génétique, la biophysique et des techniques de biologie cellulaire. De plus, la microscopie photonique de pointe sur tissus vivants ainsi que la microscopie électronique constituent le cœur de nos expériences quotidiennes.

 

Migration du noyau dans l’ovocyte de drosophile

 

Organisation des membranes dans l’ovocyte de drosophile

Migration collectives des cellules trachéales dans l’embryon de drosophile

Responsable :

Antoine GUICHET
Téléphone : +33 (0)157278076+33 (0)157278087
Email : antoine.guichet(at)ijm.fr

 

Membres de l’équipe :

Frédéric BERNARD Enseignant-chercheur
Véronique BRODU Chercheur
Sylvain BRUN Enseignant-chercheur
Sandra CLARET Enseignant-chercheur
Jean-Antoine LEPESANT Chercheur émérite
Sandra CARVALHO Doctorante
Fanny ROLAND GOSSELIN Doctorante
Joanna AOUAD Master 2
Nicolas ROBERT Master 2
Marie Caroline VIRON Master 2

The Importance of the Position of the Nucleus in Drosophila Oocyte Development. Lepesant JA, Roland-Gosselin F, Guillemet C, Bernard F, Guichet A. Cells. (2024)

 

Kinesin-1 promotes centrosome clustering and nuclear migration in the Drosophila oocyte. Development. Loh, M., Bernard, F., Guichet, A. (2023).

 

Dynein-mediated transport and membrane trafficking control PAR3 polarised distribution. Jouette J, Guichet A, Claret S. eLIFE (2019)

 

Distinct molecular cues ensure a robust microtubule-dependent nuclear positioning in the Drosophila oocyte.Tissot N, Lepesant JA, Bernard F, Legent K, Bosveld F, Martin C, Faklaris O, Bellaïche Y, Coppey M, Guichet A. Nature Communication. (2017)

 

Microtubule-dependent apical restriction of recycling endosomes sustains adherens junctions during morphogenesis of the Drosophila tracheal system. Le Droguen PM, Claret S, Guichet A, Brodu V. Development. (2015)

 

PI(4,5)P2 produced by the PI4P5K Skittles controls the apical domain size by tethering PAR-3 in Drosophila epithelial cells. Claret S, Benoit B, Richard-Ferrec G, Guichet A, Current Biology. (2014)

 

A developmentally regulated two-step process generates a non-centrosomal microtubule network. Brodu V, Baffet A, Le Droguen PM, Casanova J, Guichet A. Developmental Cell . (2010)

 

PIP5K-dependent production of PIP2 sustains microtubule organization to establish polarized transport in the Drosophila oocyte. Gervais L, Claret S, Januschke J, Roth S, Guichet A. Development (2008).

 

The Centrosome Nucleus complex directs the formation of two orthogonal microtubule polarized transport in the Drosophila oocyte Januschke J, Gervais L, Gillet, L., Keryer G, Bornen M, Guichet A. Development. (2006).

 

Polar transport in the Drosophila oocyte requires Dynein and Kinesin I cooperation, Januschke J, Gervais L, Dass S, Kaltschmidt J, Lopez-Schier H, St. Johnston D, Brand A, Roth S and Guichet A. Current Biology (2002).

Publications 

Mallart, C., Netter, S., Chalvet, F., Claret, S., Guichet, A., Montagne, J., Pret, A.-M., & Malartre, M. (2024). JAK-STAT-dependent contact between follicle cells and the oocyte controls Drosophila anterior-posterior polarity and germline development. Nature Communications, 15(1), 1627. https://doi.org/10.1038/s41467-024-45963-z
Lepesant, J.-A., Roland-Gosselin, F., Guillemet, C., Bernard, F., & Guichet, A. (2024). The Importance of the Position of the Nucleus in Drosophila Oocyte Development. Cells, 13(2), 201. https://doi.org/10.3390/cells13020201
Zhu, Z., Becam, I., Tovey, C. A., Elfarkouchi, A., Yen, E. C., Bernard, F., Guichet, A., & Conduit, P. T. (2023). Multifaceted modes of γ-tubulin complex recruitment and microtubule nucleation at mitotic centrosomes. Journal of Cell Biology, 222(10), e202212043. https://doi.org/10.1083/jcb.202212043
Loh, M., Bernard, F., & Guichet, A. (2023). Kinesin-1 promotes centrosome clustering and nuclear migration in the Drosophila oocyte. Development, dev.201728. https://doi.org/10.1242/dev.201728
Galenza, A., Moreno-Roman, P., Su, Y.-H., Acosta-Alvarez, L., Debec, A., Guichet, A., Knapp, J.-M., Kizilyaprak, C., Humbel, B. M., Kolotuev, I., & O’Brien, L. E. (2023). Basal stem cell progeny establish their apical surface in a junctional niche during turnover of an adult barrier epithelium. Nature Cell Biology. https://doi.org/10.1038/s41556-023-01116-w
Tovey, C. A., Tsuji, C., Egerton, A., Bernard, F., Guichet, A., de la Roche, M., & Conduit, P. T. (2021). Autoinhibition of Cnn binding to γ-TuRCs prevents ectopic microtubule nucleation and cell division defects. The Journal of Cell Biology, 220(8), e202010020. https://doi.org/10.1083/jcb.202010020
Loh, M., Guichet, A., & Bernard, F. (2021). Nuclear Migration in the Drosophila Oocyte. JoVE (Journal of Visualized Experiments), 171, e62688. https://doi.org/10.3791/62688
Bernard, F., Jouette, J., Durieu, C., Le Borgne, R., Guichet, A., & Claret, S. (2021). GFP-Tagged Protein Detection by Electron Microscopy Using a GBP-APEX Tool in Drosophila. Frontiers in Cell and Developmental Biology, 9. https://www.frontiersin.org/articles/10.3389/fcell.2021.719582
Mukherjee, A., Brooks, P. S., Bernard, F., Guichet, A., & Conduit, P. T. (2020). Microtubules originate asymmetrically at the somatic golgi and are guided via Kinesin2 to maintain polarity within neurons. ELife, 9, e58943. https://doi.org/10.7554/eLife.58943
Métivier, M., Monroy, B. Y., Gallaud, E., Caous, R., Pascal, A., Richard-Parpaillon, L., Guichet, A., Ori-McKenney, K. M., & Giet, R. (2019). Dual control of Kinesin-1 recruitment to microtubules by Ensconsin in Drosophila neuroblasts and oocytes. Development (Cambridge, England), 146(8), dev171579. https://doi.org/10.1242/dev.171579
Jouette, J., Guichet, A., & Claret, S. B. (2019). Dynein-mediated transport and membrane trafficking control PAR3 polarised distribution. ELife, 8, e40212. https://doi.org/10.7554/eLife.40212
Bernard, F., Lepesant, J.-A., & Guichet, A. (2018). Nucleus positioning within Drosophila egg chamber. Seminars in Cell & Developmental Biology, 82, 25–33. https://doi.org/10.1016/j.semcdb.2017.10.013
Tissot, N., Lepesant, J.-A., Bernard, F., Legent, K., Bosveld, F., Martin, C., Faklaris, O., Bellaïche, Y., Coppey, M., & Guichet, A. (2017). Distinct molecular cues ensure a robust microtubule-dependent nuclear positioning in the Drosophila oocyte. Nature Communications, 8(1), 15168. https://doi.org/10.1038/ncomms15168
White, P. M., Serbus, L. R., Debec, A., Codina, A., Bray, W., Guichet, A., Lokey, R. S., & Sullivan, W. (2017). Reliance of Wolbachia on High Rates of Host Proteolysis Revealed by a Genome-Wide RNAi Screen of Drosophila Cells. Genetics, 205(4), 1473–1488. https://doi.org/10.1534/genetics.116.198903
Jouette, J., Claret, S., & Guichet, A. (2017). Phosphoinositides and Cell Polarity in the Drosophila Egg Chamber. In M. Kloc (Ed.), Oocytes: Maternal Information and Functions (pp. 169–187). Springer International Publishing. https://doi.org/10.1007/978-3-319-60855-6_8
Debec, A., Megraw, T. L., & Guichet, A. (2016). Methods to Establish Drosophila Cell Lines. In C. Dahmann (Ed.), Drosophila: Methods and Protocols (pp. 333–351). Springer. https://doi.org/10.1007/978-1-4939-6371-3_21
Le Droguen, P.-M., Claret, S., Guichet, A., & Brodu, V. (2015). Microtubule-dependent apical restriction of recycling endosomes sustains adherens junctions during morphogenesis of the Drosophila tracheal system. Development, 142(2), 363–374. https://doi.org/10.1242/dev.113472
Legent, K., Tissot, N., & Guichet, A. (2015). Visualizing Microtubule Networks During Drosophila Oogenesis Using Fixed and Live Imaging. In D. P. Bratu & G. P. McNeil (Eds.), Drosophila Oogenesis: Methods and Protocols (pp. 99–112). Springer. https://doi.org/10.1007/978-1-4939-2851-4_7
Claret, S., Jouette, J., Benoit, B., Legent, K., & Guichet, A. (2014). PI(4,5)P2 Produced by the PI4P5K SKTL Controls Apical Size by Tethering PAR-3 in Drosophila Epithelial Cells. Current Biology, 24(10), 1071–1079. https://doi.org/10.1016/j.cub.2014.03.056
Lecland, N., Debec, A., Delmas, A., Moutinho-Pereira, S., Malmanche, N., Bouissou, A., Dupré, C., Jourdan, A., Raynaud-Messina, B., Maiato, H., & Guichet, A. (2013). Establishment and mitotic characterization of new Drosophila acentriolar cell lines from DSas-4 mutant. Biology Open, 2(3), 314–323. https://doi.org/10.1242/bio.20133327
Baffet, A. D., Benoit, B., Januschke, J., Audo, J., Gourhand, V., Roth, S., & Guichet, A. (2012). Drosophila tubulin-binding cofactor B is required for microtubule network formation and for cell polarity. Molecular Biology of the Cell, 23(18), 3591–3601. https://doi.org/10.1091/mbc.e11-07-0633
Parrott, B. B., Chiang, Y., Hudson, A., Sarkar, A., Guichet, A., & Schulz, C. (2011). Nucleoporin98-96 Function Is Required for Transit Amplification Divisions in the Germ Line of Drosophila melanogaster. PLOS ONE, 6(9), e25087. https://doi.org/10.1371/journal.pone.0025087
Brodu, V., Baffet, A. D., Le Droguen, P.-M., Casanova, J., & Guichet, A. (2010). A Developmentally Regulated Two-Step Process Generates a Noncentrosomal Microtubule Network in Drosophila Tracheal Cells. Developmental Cell, 18(5), 790–801. https://doi.org/10.1016/j.devcel.2010.03.015
Fabian, L., Wei, H.-C., Rollins, J., Noguchi, T., Blankenship, J. T., Bellamkonda, K., Polevoy, G., Gervais, L., Guichet, A., Fuller, M. T., & Brill, J. A. (2010). Phosphatidylinositol 4,5-bisphosphate Directs Spermatid Cell Polarity and Exocyst Localization in Drosophila. Molecular Biology of the Cell, 21(9), 1546–1555. https://doi.org/10.1091/mbc.e09-07-0582
Lachkar, S., Lebois, M., Steinmetz, M. O., Guichet, A., Lal, N., Curmi, P. A., Sobel, A., & Ozon, S. (2010). Drosophila Stathmins Bind Tubulin Heterodimers with High and Variable Stoichiometries. The Journal of Biological Chemistry, 285(15), 11667–11680. https://doi.org/10.1074/jbc.M109.096727
Compagnon, J., Gervais, L., Roman, M. S., Chamot-Bœuf, S., & Guichet, A. (2009). Interplay between Rab5 and PtdIns(4,5)P2 controls early endocytosis in the Drosophila germline. Journal of Cell Science, 122(1), 25–35. https://doi.org/10.1242/jcs.033027
Nicolas, E., Chenouard, N., Olivo-Marin, J.-C., & Guichet, A. (2009). A Dual Role for Actin and Microtubule Cytoskeleton in the Transport of Golgi Units from the Nurse Cells to the Oocyte Across Ring Canals. Molecular Biology of the Cell, 20(1), 556–568. https://doi.org/10.1091/mbc.e08-04-0360
Gervais, L., Claret, S., Januschke, J., Roth, S., & Guichet, A. (2008). PIP5K-dependent production of PIP2 sustains microtubule organization to establish polarized transport in the Drosophila oocyte. Development, 135(23), 3829–3838. https://doi.org/10.1242/dev.029009
Januschke, J., Nicolas, E., Compagnon, J., Formstecher, E., Goud, B., & Guichet, A. (2007). Rab6 and the secretory pathway affect oocyte polarity in Drosophila. Development, 134(19), 3419–3425. https://doi.org/10.1242/dev.008078
GUICHET, A. (2007). Mise en place de la polarité au sein de l’ovocyte de drosophile : (R)évolution du développement. Mise En Place de La Polarité Au Sein de l’ovocyte de Drosophile : (R)Évolution Du Développement, 281, 24–27.
Januschke, J., Gervais, L., Gillet, L., Keryer, G., Bornens, M., & Guichet, A. (2006). The centrosome-nucleus complex and microtubule organization in the Drosophila oocyte. Development, 133(1), 129–139. https://doi.org/10.1242/dev.02179
Januschke, J., Gervais, L., Dass, S., Kaltschmidt, J. A., Lopez-Schier, H., Johnston, D. St., Brand, A. H., Roth, S., & Guichet, A. (2002). Polar Transport in the Drosophila Oocyte Requires Dynein and Kinesin I Cooperation. Current Biology, 12(23), 1971–1981. https://doi.org/10.1016/S0960-9822(02)01302-7
Tazuke, S. I., Schulz, C., Gilboa, L., Fogarty, M., Mahowald, A. P., Guichet, A., Ephrussi, A., Wood, C. G., Lehmann, R., & Fuller, M. T. (2002). A germline-specific gap junction protein required for survival of differentiating early germ cells. Development, 129(10), 2529–2539. https://doi.org/10.1242/dev.129.10.2529
Guichet, A., Wucherpfennig, T., Dudu, V., Etter, S., Wilsch‐Bräuniger, M., Hellwig, A., González‐Gaitán, M., Huttner, W. B., & Schmidt, A. A. (2002). Essential role of endophilin A in synaptic vesicle budding at the Drosophila neuromuscular junction. The EMBO Journal, 21(7), 1661–1672. https://doi.org/10.1093/emboj/21.7.1661
Ozon, S., Guichet, A., Gavet, O., Roth, S., & Sobel, A. (2002). Drosophila Stathmin: A Microtubule-destabilizing Factor Involved in Nervous System Formation. Molecular Biology of the Cell, 13(2), 698–710. https://doi.org/10.1091/mbc.01-07-0362
Guichet, A., Peri, F., & Roth, S. (2001). Stable Anterior Anchoring of the Oocyte Nucleus Is Required to Establish Dorsoventral Polarity of the Drosophila Egg. Developmental Biology, 237(1), 93–106. https://doi.org/10.1006/dbio.2001.0354
Jiménez, G., Guichet, A., Ephrussi, A., & Casanova, J. (2000). Relief of gene repression by torso RTK signaling: role of capicua in Drosophila terminal and dorsoventral patterning. Genes & Development, 14(2), 224–231.
Tomancak, P., Guichet, A., Zavorszky, P., & Ephrussi, A. (1998). Oocyte polarity depends on regulation of gurken by Vasa. Development, 125(9), 1723–1732. https://doi.org/10.1242/dev.125.9.1723
Florence, B., Guichet, A., Ephrussi, A., & Laughon, A. (1997). Ftz-F1 is a cofactor in Ftz activation of the Drosophila engrailed gene. Development, 124(4), 839–847. https://doi.org/10.1242/dev.124.4.839
Guichet, A., Copeland, J. W. R., Erdélyi, M., Hlousek, D., Závorszky, P., Ho, J., Brown, S., Percival-Smith, A., Krause, H. M., & Ephrussi, A. (1997). The nuclear receptor homologue Ftz-F1 and the homeodomain protein Ftz are mutually dependent cofactors. Nature, 385(6616), 548–552. https://doi.org/10.1038/385548a0
Erdélyi, M., Michon, A.-M., Guichet, A., Glotzer, J. B., & Ephrussi, A. (1995). Requirement for Drosophila cytoplasmic tropomyosin in oskar mRNA localization. Nature, 377(6549), 524–527. https://doi.org/10.1038/377524a0
Overexpression of Partner of Numb Induces Asymmetric Distribution of the PI4P 5-Kinase Skittles in Mitotic Sensory Organ Precursor Cells in Drosophila | PLOS ONE. (n.d.). Retrieved February 19, 2024, from https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003072
Overexpression of Partner of Numb Induces Asymmetric Distribution of the PI4P 5-Kinase Skittles in Mitotic Sensory Organ Precursor Cells in Drosophila | PLOS ONE. (n.d.). Retrieved February 19, 2024, from https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003072
  • Maëlys Loh (2022) : Asymétries moléculaires contrôlant le positionnement du noyau dans l’ovocyte de drosophila melanogaster
  • Julie Jouette (2017) : Phosphoinositides et contrôle de la polarité cellulaire : régulations croisées entre la PIP5K Skittles et les protéines de polarité PAR1 et PAR3.
  • Nicolas Tissot (2015) : Relation croisée entre le positionnement du noyau et l’organisation des microtubules dans la polarisation de l’ovocyte chez la drosophile : approche par microscopie optique ex-vivo et photomanipulation
  • Pierre-Marie Le Droguen (2013) : Rôle du réseau de microtubules lors de la morphogénèse du système trachéal dans l’embryon de drosophile
  • Alexandre Baffet (2010) : Organisation des microtubules et polarité cellulaire chez la Drosophile
  • Julien Compagnon (2008) : Etude du trafic vésiculaire au cours de l’ovogenèse chez la Drosophile
  • Louis Gervais (2006): Etude des relations entre la dynamique du réseau de microtubules et le transport polarisé dans l’ovocyte.
  • Jens Januschke (2005) : mRNA localization in the Drosophila oocyte

Nuclear Deformation in Eukaryotes, Projet Emergence en Recherche, IDEX Université Paris Cité (coordinateurs Fred Bernard et Sylvain Brun).