The Institut Jacques-Monod, funded jointly by the CNRS and the University Paris Diderot, is one of the main centers for basic research in biology in the Paris area.
It is headed by Michel Werner, Research Director.

Find out more

IJM News

  • June 2019 : Chromatin condensation fluctuations rather than steady-state predict chromatin accessibility

    Chromatin accessibility to protein factors is critical for genome activities. However, the dynamic properties of chromatin higher-order structures that regulate its accessibility are poorly understood. Researchers from the team “mechanotransduction: from cell surface to nucleus” took advantage of the microenvironment sensitivity of the fluorescence lifetime of EGFP-H4 histone incorporated in chromatin to map in the nucleus of live cells the dynamics of chromatin condensation and its direct interaction with a tail acetylation recognition domain (the double bromodomain module of human TAFII250, dBD). They revealed chromatin condensation fluctuations supported by mechanisms fundamentally distinct from that of condensation. Fluctuations are spontaneous, yet their amplitudes are affected by their sub-nuclear localization and by competing mechanisms dependent on histone acetylation, ATP and both. Moreover, accessibility of acetylated histone H4 to dBD is not restricted by chromatin condensation nor predicted by acetylation, rather, it is predicted by chromatin condensation fluctuations.

  • March 2019: Is the replication timing control constant through S phase?

    Before each cell division, the full genome has to be entirely and faithfully duplicated thereby each daughter cell inherits the complete genetic information. This duplication occurs under the control of a highly sophisticated replication program during the restricted time period corresponding to S phase. DNA replication is initiated at a large number of sites, known as origins of replication, on the chromosomes of eukaryotic cells. In one individual cell, only a part of the origins licensed in G1 phase are activated during S phase thus illustrating the flexible origin choice which is directly related to the stochastic nature of the eukaryotic replication program. Another particularity of the program is that origin activation is also subject to temporal regulation. Like this, some domains of hundred kilobases are replicated in early S phase, others are replicated in mid S phase and the remainders in late S phase. This temporal control is very strict. To date, the factors responsible for the establishment, regulation and maintenance of these domains throughout the cell cycle remain largely unknown. As a first step towards a better comprehension of this temporal program, the team of MN Prioleau has investigated whether the stochasticity of the timing program is changing along the S phase.

  • January 2019: when Transcription Meets Replication

    Conflicting activities necessary for the expression, the maintenance and the propagation of genomes need to be coordinated. Just like one's liberty to swing fists ends where another's nose begins, coordination is achieved through a tight control of where and when directly opposed activities take place. In a study published recently in eLife, researchers from the Libri team are now showing that replication factors generally "protect" sites where replication initiates by terminating incoming transcription, and that the low levels of transcription that enter origins of replication affect their firing efficiency.

All the news

Subscribe to our mailing lists


Come and join us!

Juin 2019 : Ingénieur d'Études en CDD 12 ou 24 mois, plateforme imagoSeine

Next events

  • Wednesday19 June2019

    Séminaire de l'Institut

    Uri FRANK

    A molecular switch for cnidarian germ cell induction
  • Tuesday25 June2019

    Séminaire de l'Institut

    Bruno ANDRÉ

    A novel TORC1 activation pathway triggered by active nutrient uptake in yeast
  • Wednesday26 June2019

    Soutenance de thèse


    Mathematical modeling and evolutionary processes

All events

Go to top page